SCHEME AND SYLLABUS FOR RECRUITMENT TO THE POST OF ASSISTANT CHEMICAL EXAMINERS IN A.P. PROHIBITION AND EXCISE SUBORDINATE SERVICE

SCHEME

Bachelor's Degree Standard:

<table>
<thead>
<tr>
<th>PART-A: Written (Competitive) Examination (Objective Type)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paper-I: General Studies</td>
</tr>
<tr>
<td>150 Marks</td>
</tr>
<tr>
<td>150 Questions</td>
</tr>
<tr>
<td>150 Minutes</td>
</tr>
<tr>
<td>Paper-II: Concerned Subject (Chemistry or Pharmacy)</td>
</tr>
<tr>
<td>150 Marks</td>
</tr>
<tr>
<td>150 Questions</td>
</tr>
<tr>
<td>150 Minutes</td>
</tr>
<tr>
<td>PART-B: Interview (Oral Test)</td>
</tr>
<tr>
<td>30 Marks</td>
</tr>
</tbody>
</table>

SYLLABUS

GENERAL STUDIES

General Science

Current Events of National and International Importance.

History of India and Indian National Movement. India and World Geography.

General Mental Ability.

Questions on General Science will cover General appreciation and understanding of science including matters of every day observation and experience, as may be expected of a well educated person who has not made a special study of any particular scientific discipline. In current events, knowledge of significant national and international events will be tested. In History of India, emphasis will be on broad general understanding of the subject in its social, economic and political aspects. Questions on Indian National Movement will relate to the nature and character of the nineteenth century resurgence, growth of Nationalism and attainment of independence. In geography emphasis will be on geography of India. Questions on geography of India will relate to physical, social and economic geography of the country, including the main features of the Indian agricultural and natural resources. On general mental ability, the candidates will be tested on reasoning and analytical abilities.
CHEMISTRY

SECTION-A: (INORGANIC CHEMISTRY):

1.1 Atomic structure: Schrödinger wave equation, significance of and quantum numbers and their significance, radial and angular probability, shapes of orbitals, relative energies of atomic orbitals as a function of atomic number. Electronic configurations of elements; Aufbau principle, Hund’s multiplicity rule, Pauli exclusion principle.

1.2 Chemical periodicity: Periodic classification of elements, salient characteristics of s,p,d and f block elements. Periodic trends of atomic radii, ionic radii, ionization potential, electron affinity and electro-negativity in the periodic table.

1.3 Chemical bonding: Types of bonding, overlap of atomic orbitals, sigma and pi-bonds, hydrogen and metallic bonds. Shapes of molecules bond order, bond length, V.S.E.P.R. theory and bond angles. The concept of hybridization and shapes of molecules and ions.

1.4 Oxidation states and oxidation number: Oxidation and reduction, oxidation numbers, common redox reactions, ionic equations. Balancing of equations for oxidation and reduction reactions.

1.5 Acids and bases: Bronsted and Lewis theories of acids and bases. Hard and soft acids and bases. HSAB principle, relative strengths of acids and bases and the effect of substituents and solvents on their strength.

1.6 Chemistry of elements:
 i) Hydrogen: Its unique position in the periodic table, isotopes, ortho and para hydrogen, industrial production, heavy water.
 ii) Chemistry of ‘s’ and ‘p’ block elements: Electronic configuration, general characteristics properties, inert pair effect, allotropy and catenation. Special emphasis on solutions of alkali and alkaline earth metals in liquid ammonia. Preparation, properties and structures of boric acid, borates, boron nitrides, borohydride (diborane), carboranes, oxides and oxyacids of nitrogen, phosphorous, sulphur and chlorine; interhalogen compounds, polyhalide ions, pseudohalogen, fluorocarbons and basic properties of halogens. Chemical reactivity of noble gases, preparation, structure and bonding of noble gas compounds.
 iii) Chemistry of ‘d’ block elements: Transition metals including lanthanides, general characteristic properties, oxidation states, magnetic behaviour, colour. First row transition metals and general properties of their compounds (oxides, halides and sulphides); lanthanide contraction.

1.7 Extraction of metals: Principles of extraction of metals as illustrated by sodium, magnesium, aluminum, iron, nickel, copper, silver and gold.

1.8 Nuclear Chemistry: Nuclear reactions; mass defect and binding energy, nuclear fission and fusion. Nuclear reactors; radioisotopes and their applications.

1.9 Coordination compounds: Nomenclature, isomerism and theories of coordination compounds and their role in nature and medicine.

1.10 Pollution and its control: Air pollution, types of air pollution, control of air and water pollution, radioactive pollution.

SECTION-B: (ORGANIC CHEMISTRY):

2.1 Bonding and shapes of organic molecules: Electronegativity, electron displacements-inductive, mesomeric and hyperconjugative effects; bond polarity and bond polarizability, dipole moments of organic molecules; hydrogen bond; effects of solvent and structure on dissociation constants of acids and bases; bond formation, fission of covalent bonds; homolysis and heterolysis; reaction intermediates-carbocations, carbanions, free radicals and carbenes; generation geometry and stability; nucleophiles and electrophiles.

2.2 Chemistry of aliphatic compounds: Nomenclature alkanes-synthesis, reactions (free radical halogenation) – reactivity and selectivity, sulphonation-detergents; cycloalkanes-Baeyer’s strain theory; alkanes and alkynes-synthesis, electrophilic addition; reactions, Markownikov’s rule, peroxide effects, 1,3-dipolar addition; nucleophilic addition to electron-deficient alkenes; polymerization; relative acidity; synthesis and reactions of alkyl halides, alkanols, alkanals, alkanones, alkanic acids, esters, amides, nitriles, amines, acid anhydrides, -unsaturated ketones, ethers and nitriles.
2.3 **Stereochemistry of carbon compounds**: Elements of symmetry, chiral and achiral compounds. Fischer projection formulae; optical isomerism of lactic and tartaric acids, enantiomerism and diastereo-isomerism; configuration (relative and absolute); conformations of alkanes up to four carbons, cyclohexane and dimethylcyclo-hexanes their potential energy D.L and R.S notations of compounds containing chiral centers; projection formulae-Fischer, Newman and sawhorse of compounds containing two adjacent chiral centers; meso and dl-isomers, erythro and three isomers; racemization and resolution; examples of homotopic, enantiotopic and diastereotopic atoms and groups in organic compounds, geometrical isomers; E and Z notations. Stereo-chemistry of SN1, SN2,E1 and E2 reactions.

2.4 **Organometallic compounds**: Preparation and synthetic uses of Grignard reagents, alkyl lithium compounds.

2.5 **Active methylene compounds**: Diethyl malonate, ethyl acetoacetate. ethyl cyanoacetate-applications in organic synthesis; tautomerism (keto-enol).

2.6 **Chemistry of aromatic compounds**: Aromaticity; Huckel’s rule; electrophilic aromatic substitution-nitration, sulphonation, halogenation (nuclear and side chain), Friedel-Crafts alkylation and acylation, substituents effect; chemistry and reactivity of aromatic halides, phenols, nitro, diazo, diazonium and sulphonic acid derivatives, benzene reactions.

2.7 **Chemistry of biomolecules**: (i) Carbohydrates: Classification, reactions, structure of glucose, D.L-configuration, osazone formation; fructose and sucrose; step-up step-down of aldoses and ketoses; and their interconversion, (ii) Amino acids: Essential amino acids; zwitterions, isoelectric point, polypeptides; proteins; methods of synthesis of -amino acids. (iii) Elementary idea of oils, fats, soaps and detergents.

2.8 Basic principles and applications of UV, visible, IR and NMR spectroscopy of simple organic molecules.

SECTION-C: (PHYSICAL CHEMISTRY):

3.1 **Gaseous state**: Deviation of real gases from the equation of state for an ideal gas, Vander Waals and Viril equation of state, critical phenomena, principle of corresponding states, equation for reduced state. Liquification of gases, distribution of molecular speed, collisions between molecules in a gas; mean free path, specific heat of gases.

3.2 **Thermodynamics**: (i) **First Law and its applications**: Thermodynamic systems, states and processes work, heat and internal energy, zeroth law of thermodynamics, various types of work done on a system in reversible and irreversible processes. Calorimetry and thermo-chemistry, enthalpy and enthalpy changes in various physical and chemical processes, Joule-Thomson effect, inversion temperature. Heat capacities and temperature dependence of enthalpy and energy changes. (ii) **Second Law and its applications**: Spontaneity of a process, entropy and entropy changes in various processes, free energy functions, criteria for equilibrium, relation between equilibrium constant and thermodynamic quantities.

3.3 **Phase rule and its applications**: Equilibrium between liquid, solid and vapours of a pure substance, Clausius-Clapeyron equation and its applications. Number of components, phases and degrees of freedom; phase rule and its applications; simple systems with one (water and sulphur) and two components (lead-silver, salt hydrates). Distribution law, its modifications, limitations and applications.

3.4 **Solutions**: Solubility and its temperature dependence, partially miscible liquids, upper and lower critical solution temperatures, vapour pressures of liquids over their mixtures, Raoult’s and Henry’s law, fractional and steam distillations.

3.5 **Colligative Properties**: Dilute solutions and colligative properties, determination of molecular weights, using colligative properties.

3.6 **Electro-chemistry**: Ions in solutions, ionic equilibria, dissociation constants of acids and bases, hydrolysis, pH and buffers, theory of indicators and acid-base titrations. Conductivity of ionic solutions, its variation with concentration, Ostwald’s dilution law, Kohrausch law and its application. Transport number and its determination. Faraday’s laws of electrolysis, galvanic cells and measurements of their e.m.f., cell reactions, standard cell, standard reduction potential Nernst equation, relation between thermodynamic quantities and cell e.m.f., fuel cells, potentiometric titrations.
3.7 **Chemical kinetics**: Rate of chemical reaction and its dependence on concentrations of the reactants, rate constant and order of reaction and their experimental determination; differential and integral rate equations for first and second order reaction, half-life periods; temperature dependence of rate constant and Arrhenius parameters; elementary ideas regarding collision and transition state theory.

3.8 **Photochemistry**: Absorption of light, laws of photochemistry, quantum yield, the excited state and its decay by radiative, non-radiative and chemical pathways; simple photochemical reactions.

3.9 **Catalysis**: Homogeneous and heterogeneous catalysis and their characteristics, mechanism of heterogeneous catalysis; enzyme catalysed reactions (Michaelis-Menten mechanism)

3.10 **Colloids**: The colloidal state, preparation and purification of colloids and their characteristics properties; lyophilic and lyophobic colloids and coagulation; protection of colloids; gels, emulsions, surfactants and micelles.
PHARMACY

i) History of Pharmacy: Code of ethics in Pharmacy, Poscology; Principles of dispensing of mixtures, emulsion, powers and suppositories; Different types of Incompatibilities.

ii) Pharmacy Act; Drugs and Cosmetics Act and Rules; Drugs price control order including amendments.

iii) Methods of Sterilization and test for sterility; Preparation of vaccines, Sera and Anti-toxins; Manufacture of Penicillin and Streptomycin.

iv) Methods of classification of crude drugs; Adulteration and evaluation of crude drugs.

v) Pharmacognosy of Senna, Digitalis, Ispaghula, Cinchona, Cinnamon, Renwolffia, Podophyllu, Ergot Cod liver oil and Geletin.

vi) Principles, instrumentation and applications of colorimetry. Spectrophotometry, fluorimetry, gas chromatography and High performance liquid chromatography.

II.

i) Theory and applications of rheology (Newtonian and Non-Newtonian); Colloidal and interfacial phenomenon and their applications; Coarse dispersion (emulsions and suspensions)

ii) Physics-Chemical, formulation and biological factors effecting drug absorption.

iii) Formulation, technology and qualify control of tablets, capsules, liquid crias, aercsols, creams and cintments, injectables and sustained telease medicaments.

iv) Structure activity relationship, synthesis, chemical nomenclature and uses of following classes of drugs – dypnotics and Sedatives; trauqlizers; Analgesics and Autipyretics; Anti-inflammatory drugs; Diuretics; anti-hypertensives and Chemotherapeutic Agents.

v) Pharmacology of Local anesthetics; Diuretics; Hormones; Hypeglyeemic agents; Anti-histaminics; Drugs acting on central pervious system; Adrenergic and Cholingrgic drugs and Cardio-vascular agents.

vi) Pharmacokinetic and Pharmacodynamic drug interactions with suitable examples; Terratogenicity; Drug-induced diseases.

Sd/- Secretary